Holographic quantum simulation of entanglement renormalization circuits

Sajant Anand, Johannes Hauschild, Yuxuan Zhang, Andrew Potter, Michael P. Zaletel

University of California, Berkeley University of Texas at Austin University of British Columbia, Vancouver

28/06/2022

2 Holographic state preparation setup

3 Results on quantum hardware

4 Noise considerations

5 Summary and Outlook

"Nature is quantum, goddamn it! So if we want to simulate it, we need a quantum computer."

R. Feynman, 1981

NISQ era devices

Exa-Scale Supercomputers

 \leftrightarrow

Variational Quantum Eigensolver (VQE)

Goal find ground state $H |\psi_0\rangle = E_0 |\psi_0\rangle$ of a *physical* Hamiltonian $H = \sum_i H_i$

 \Rightarrow known good ansatz: tensor networks

Justification of tensor networks: entanglement entropy

Area law

for ground states of *gapped, local* Hamiltonians

 $S(L) \propto {\rm area}~{\rm of}~{\rm cut} \propto L^{d-1}$

Hastings J.Stat.Mech. 2007

critical (scale-invariant) points conformal field theory predicts in 1D $S(L) = \frac{c}{6} \log (L) + \text{const.}$

Calabrese, Cardy J.Stat.Mech. 2004

Tensor Network Ansätze in 1D

orthogonality conditions:

$$\sum_{\sigma} B_{\sigma} B_{\sigma}^{\dagger} = \xrightarrow{\bullet B}_{\bullet} = = 1$$

Multiscale Entanglement Renormalization Ansatz (MERA)

Trapped-Ion QCCD @ Honeywell/Quantinuum

- Pino *et al.*, Nature **592** 209 (2021)
- 171 Yb⁺ qubit 138 Ba⁺ coolant
- transport qubits for interactions between gate/auxiliary zones
- + low error rates per gate
 - single-qubit: 1.1×10^{-4}
 - two-qubit: 8.0×10^{-3} (in spring 2021)
- + can measure/reset qubit mid-circuit
- low number of qubits $N \leq 10$

\Rightarrow ideal for holographic simulation

arXiv:2203.00886

Recap: Holographic MPS state preparation

- ⇒ "holographic": reset and reuse qubit
- 🔋 Kim arXiv:1702.02093
- requirements

$$N_{
m qubits} = 1 + \log_2(\chi) \propto {
m const.}$$
 in L
 $N_{
m gates} \propto L$

Foss-Feig *et al.*, PRR **3**, 033002 (2021)

Decomposition of general $U(\chi)$

- \bullet general $U(\chi)$ has prohibiting $\chi^2=4^{N_{\rm qubits}}$ real parameters
- instead decompose with sequence of 2-qubit gates, e.g. brick-wall or ladder fashion

Holographic MERA state preparation

• requirements

$$\begin{split} N_{\rm qubits} &= 1 + 2 \cdot N_{\rm layers} \\ N_{\rm gates} &= \sum_{i=1}^{N_{\rm layers}} \left(\frac{L}{2^{i-1}} - 1 \right) < 2L \end{split}$$

• here: restrict to $\chi = 2$ MERA \Rightarrow only two-qubit unitaries

Our Setup

• classically optimize tensor network for given H

- find high-precision reference MPS with DMRG, then optimize MERA to have maximal overlap.
- could be optimized directly on quantum hardware with VQE
- 2 convert to circuit
 - extend V and parametrize U
- Irun circuit on quantum hardware
 - circuit compilation at Honeywell
- evaluate expectation values and correlation functions
 - separate runs for X/Z observables

Transverse field Ising model $H = \sum_{i} -(X_i X_{i+1} + Z_i)$

 \Rightarrow systematic errors beyond measurement noise

Self-dual TFI $H = \sum_{i} -(X_i X_{i+1} + Z_i) + 4(Z_i Z_{i+1} + X_i X_{i+2})$

 \Rightarrow observe correlations beyond N_{qubits} finite-layer MERA causes correlation cutoff - can we do better?

Between MERA and MPS: generalized MERA (gMERA)

Self-dual transverse-field Ising model: MERA vs gMERA

 \Rightarrow gMERA is more expressive at low number of layers

Noise considerations

i Kim, Swingle, arXiv:1711.07500 \Rightarrow MERA is noise resilient

see also 📄 Sewell, Jordan, arXiv:2109.09787

Noise simulations

depolarizing noise with 2-qubit error rate $p_2^{\rm err} = 10 p_1^{\rm err}$

 \Rightarrow *best* network depends on available qubits and noise levels

• gMERA has more representational power, but MERA is more noise resilient

Johannes Hauschild (UCB→TUM)

arXiv:2203.00886

Summary

- taylored to (Honeywell's) trapped ions: small number of qubits, ability to reset, and low noise per gate
- propose gMERA between MERA and MPS
- optimal network choice depends on available qubit number and noise

- efficiency of optimization
- time evolution
- \bullet isoTNS in 2D

Thank you for your attention!

arXiv:2203.00886

Appendix

Motivation

- 2 Holographic state preparation setup
- 3 Results on quantum hardware
- 4 Noise considerations
- 5 Summary and Outlook

6 Appendix

Noise simulations MPS vs gMERA

